Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675939

RESUMEN

The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl are a natural reservoir of the influenza A virus. In the mid-2000s, in the north of this region, the mass deaths of swans, gulls, and pelicans from high pathogenicity avian influenza virus (HPAIV) were noted. At present, there is still little known about the presence of avian influenza virus (AIVs) and different avian paramyxoviruses (APMVs) in the region's waterfowl bird populations. Here, we report the results of monitoring these viruses in the wild waterfowl of the western coast of the middle Caspian Sea from 2017 to 2020. Samples from 1438 individuals of 26 bird species of 7 orders were collected, from which 21 strains of AIV were isolated, amounting to a 1.46% isolation rate of the total number of samples analyzed (none of these birds exhibited external signs of disease). The following subtypes were determined and whole-genome nucleotide sequences of the isolated strains were obtained: H1N1 (n = 2), H3N8 (n = 8), H4N6 (n = 2), H7N3 (n = 2), H8N4 (n = 1), H10N5 (n = 1), and H12N5 (n = 1). No high pathogenicity influenza virus H5 subtype was detected. Phylogenetic analysis of AIV genomes did not reveal any specific pattern for viruses in the Caspian Sea region, showing that all segments belong to the Eurasian clades of classic avian-like influenza viruses. We also did not find the amino acid substitutions in the polymerase complex (PA, PB1, and PB2) that are critical for the increase in virulence or adaptation to mammals. In total, 23 hemagglutinating viruses not related to influenza A virus were also isolated, of which 15 belonged to avian paramyxoviruses. We were able to sequence 12 avian paramyxoviruses of three species, as follows: Newcastle disease virus (n = 4); Avian paramyxovirus 4 (n = 5); and Avian paramyxovirus 6 (n = 3). In the Russian Federation, the Newcastle disease virus of the VII.1.1 sub-genotype was first isolated from a wild bird (common pheasant) in the Caspian Sea region. The five avian paramyxovirus 4 isolates obtained belonged to the common clade in Genotype I, whereas phylogenetic analysis of three isolates of Avian paramyxovirus 6 showed that two isolates, isolated in 2017, belonged to Genotype I and that an isolate identified in 2020 belonged to Genotype II. The continued regular monitoring of AIVs and APMVs, the obtaining of data on the biological properties of isolated strains, and the accumulation of information on virus host species will allow for the adequate planning of epidemiological measures, suggest the most likely routes of spread of the virus, and assist in the prediction of the introduction of the viruses in the western coastal region of the middle Caspian Sea.


Asunto(s)
Animales Salvajes , Avulavirus , Aves , Virus de la Influenza A , Gripe Aviar , Filogenia , Animales , Gripe Aviar/virología , Gripe Aviar/epidemiología , Aves/virología , Virus de la Influenza A/genética , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/patogenicidad , Animales Salvajes/virología , Avulavirus/genética , Avulavirus/clasificación , Avulavirus/aislamiento & purificación , Avulavirus/patogenicidad , Genoma Viral , Infecciones por Avulavirus/veterinaria , Infecciones por Avulavirus/virología , Infecciones por Avulavirus/epidemiología
2.
Vaccines (Basel) ; 12(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38400113

RESUMEN

The emergence of SARS-CoV-2 mutant variants has posed a significant challenge to both the prevention and treatment of COVID-19 with anti-coronaviral neutralizing antibodies. The latest viral variants demonstrate pronounced resistance to the vast majority of human monoclonal antibodies raised against the ancestral Wuhan variant. Less is known about the susceptibility of the evolved virus to camelid nanobodies developed at the start of the pandemic. In this study, we compared nanobody repertoires raised in the same llama after immunization with Wuhan's RBD variant and after subsequent serial immunization with a variety of RBD variants, including that of SARS-CoV-1. We show that initial immunization induced highly potent nanobodies, which efficiently protected Syrian hamsters from infection with the ancestral Wuhan virus. These nanobodies, however, mostly lacked the activity against SARS-CoV-2 omicron-pseudotyped viruses. In contrast, serial immunization with different RBD variants resulted in the generation of nanobodies demonstrating a higher degree of somatic mutagenesis and a broad range of neutralization. Four nanobodies recognizing distinct epitopes were shown to potently neutralize a spectrum of omicron variants, including those of the XBB sublineage. Our data show that nanobodies broadly neutralizing SARS-CoV-2 variants may be readily induced by a serial variant RBD immunization.

3.
Molecules ; 28(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138569

RESUMEN

Among well-studied and actively developing compounds are polyoxometalates (POMs), which show application in many fields. Extending this class of compounds, we introduce a new subclass of polyoxometal clusters (POMCs) [Mo12O28(µ-L)8]4- (L = pyrazolate (pz) or triazolate (1,2,3-trz or 1,2,4-trz)), structurally similar to POM, but containing binuclear Mo2O4 clusters linked by bridging oxo- and organic ligands. The complexes obtained by ampoule synthesis from the binuclear cluster [Mo2O4(C2O4)2(H2O)2]2- in a melt of an organic ligand are soluble and stable in aqueous solutions. In addition to the detailed characterization in solid state and in aqueous solution, the biological properties of the compounds on normal and cancer cells were investigated, and antiviral activity against influenza A virus (subtype H5N1) was demonstrated.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Agua , Modelos Moleculares , Molibdeno/farmacología , Triazoles/farmacología , Pirazoles/farmacología , Antivirales/farmacología
4.
PeerJ ; 11: e15726, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37583910

RESUMEN

Species of the genus Metarhizium are characterized by a multitrophic lifestyle of being arthropod parasites, rhizosphere colonizers, endophytes, and saprophytes. The process of adaptation to various organisms and substrates may lead to specific physiological alterations that can be elucidated by passaging through different hosts. Changes in virulence and cultivation properties of entomopathogenic fungi subcultured on different media or passaged through a live insect host are well known. Nevertheless, comparative in-depth physiological studies on fungi after passaging through insect or plant organisms are scarce. Here, virulence, plant colonization, hydrolytic enzymatic activities, toxin production, and antimicrobial action were compared between stable (nondegenerative) parent strain Metarhizium robertsii MB-1 and its reisolates obtained after eight passages through Galleria mellonella larvae or Solanum lycopersicum or after subculturing on the Sabouraud medium. The passaging through the insect caused similar physiological alterations relative to the plant-based passaging: elevation of destruxin A, B, and E production, a decrease in protease and lipase activities, and lowering of virulence toward G. mellonella and Leptinotarsa decemlineata as compared to the parent strain. The reisolates passaged through the insect or plant showed a slight trend toward increased tomato colonization and enhanced antagonistic action on tomato-associated bacterium Bacillus pumilus as compared to the parental strain. Meanwhile, the subculturing of MB-1 on the Sabouraud medium showed stability of the studied parameters, with minimal alterations relative to the parental strain. We propose that the fungal virulence factors are reprioritized during adaptation of M. robertsii to insects, plants, and media.


Asunto(s)
Metarhizium , Mariposas Nocturnas , Animales , Virulencia , Insectos/microbiología , Mariposas Nocturnas/microbiología , Plantas
5.
Viruses ; 15(5)2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-37243207

RESUMEN

Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae have already been shown in wild birds. In order to detect ACoV RNA, we conducted PCR diagnostics of cloacal swab samples from birds, which we monitored during avian influenza A virus surveillance activities. Samples from two distant Asian regions of Russia (Sakhalin region and Novosibirsk region) were tested. Amplified fragments of the RNA-dependent RNA-polymerase (RdRp) of positive samples were partially sequenced to determine the species of Coronaviridae represented. The study revealed a high presence of ACoV among wild birds in Russia. Moreover, there was a high presence of birds co-infected with avian coronavirus, avian influenza virus, and avian paramyxovirus. We found one case of triple co-infection in a Northern Pintail (Anas acuta). Phylogenetic analysis revealed the circulation of a Gammacoronavirus species. A Deltacoronavirus species was not detected, which supports the data regarding the low prevalence of deltacoronaviruses among surveyed bird species.


Asunto(s)
Avulavirus , Gammacoronavirus , Virus de la Influenza A , Gripe Aviar , Animales , Patos , Gammacoronavirus/genética , Gripe Aviar/epidemiología , Avulavirus/genética , Siberia/epidemiología , Filogenia , Aves , Animales Salvajes , Virus de la Influenza A/genética , ARN
6.
Mater Lett ; 346: 134557, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37215536

RESUMEN

Melt-blown polymer fiber materials are frequently used in the face mask manufacturing. In the present work, a melt-blown polypropylene tape was modified by silver nanoparticles using chemical metallization. The silver coatings on the fiber surface consisted of crystallites 4-14 nm in size. For the first time, these materials were comprehensively tested for antibacterial, antifungal and antiviral activity. The silver-modified materials showed antibacterial and antifungal activities, especially at high concentrations of silver, and were found to be efficient against the SARS-CoV-2 virus. The silver-modified fiber tape can be used in the face mask manufacturing and as an antimicrobial and antiviral component in filters of liquid and gaseous media.

7.
Sci Rep ; 13(1): 2306, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759670

RESUMEN

Coronaviruses (CoVs) pose a huge threat to public health as emerging viruses. Bat-borne CoVs are especially unpredictable in their evolution due to some unique features of bat physiology boosting the rate of mutations in CoVs, which is already high by itself compared to other viruses. Among bats, a meta-analysis of overall CoVs epizootiology identified a nucleic acid observed prevalence of 9.8% (95% CI 8.7-10.9%). The main objectives of our study were to conduct a qPCR screening of CoVs' prevalence in the insectivorous bat population of Fore-Caucasus and perform their characterization based on the metagenomic NGS of samples with detected CoV RNA. According to the qPCR screening, CoV RNA was detected in 5 samples, resulting in a 3.33% (95% CI 1.1-7.6%) prevalence of CoVs in bats from these studied locations. BetaCoVs reads were identified in raw metagenomic NGS data, however, detailed characterization was not possible due to relatively low RNA concentration in samples. Our results correspond to other studies, although a lower prevalence in qPCR studies was observed compared to other regions and countries. Further studies should require deeper metagenomic NGS investigation, as a supplementary method, which will allow detailed CoV characterization.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus , Animales , Coronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/genética , Genoma Viral , Filogenia , ARN
8.
Antibiotics (Basel) ; 11(10)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36289963

RESUMEN

Aerosol inhalation delivery of ceftriaxone in mice was investigated. An ultrasonic nebulizer within the ranges of mean particle diameter 0.5-1.5 µm and mass concentration 0.01-0.6 µg/cm3 was used in inhalation experiments. Pharmacokinetic measurements were carried out using a nose-only chamber. Ceftriaxone concentration in blood serum and its mass in the lungs of mice were measured as a function of time using high-performance liquid chromatography. The body-delivered dose was within the range 3-5 mg/kg. The antibacterial effect of aerosolized ceftriaxone was investigated for mice infected with Klebsiella pneumoniae 82 and Staphylococcus aureus ATCC 25 953. The survival rate for infected mice after the treatment with ceftriaxone aerosol revealed the high antibacterial efficiency of this kind of treatment.

9.
Viruses ; 14(9)2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36146842

RESUMEN

In this retrospective, single-center study, we conducted an analysis of 13,699 samples from different individuals obtained from the Federal Research Center of Fundamental and Translational Medicine, from 1 April to 30 May 2020 in Novosibirsk region (population 2.8 million people). We identified 6.49% positive for SARS-CoV-2 cases out of the total number of diagnostic tests, and 42% of them were from asymptomatic people. We also detected two asymptomatic people, who had no confirmed contact with patients with COVID-19. The highest percentage of positive samples was observed in the 80+ group (16.3%), while among the children and adults it did not exceed 8%. Among all the people tested, 2423 came from a total of 80 different destinations and only 27 of them were positive for SARS-CoV-2. Out of all the positive samples, 15 were taken for SARS-CoV-2 sequencing. According to the analysis of the genome sequences, the SARS-CoV-2 variants isolated in the Novosibirsk region at the beginning of the pandemic belonged to three phylogenetic lineages according to the Pangolin classification: B.1, B.1.1, and B.1.1.129. All Novosibirsk isolates contained the D614G substitution in the Spike protein, two isolates werecharacterized by an additional M153T mutation, and one isolate wascharacterized by the L5F mutation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/epidemiología , Niño , Genoma Viral , Genómica , Humanos , Mutación , Pandemias , Filogenia , Estudios Retrospectivos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
10.
Nanoscale ; 14(33): 12117-12128, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35959760

RESUMEN

Heat flow generation and manipulation in nanometer-sized solids using light represents one of the up-and-coming tasks in thermonanophotonics. Enhanced light-matter interaction due to plasmon resonance permits metallic nanostructures to absorb light energy efficiently, and it results in extra optical heating. The net temperature increment of nanostructures is directly dependent on heat exchange with a thermostat. However, to the best of our knowledge, precise tailoring of optical heating at a fixed pump power is still of no practical implementation. In this paper, we focus on the tunable optical heating of a plasmonic nanostructure exposed to moderate light intensity (MW cm-2) based on slowing down heat exchange through a 1D waveguide heatsink bridging the nanostructure and the highly thermal conducting thermostat. The rationale for this concept is evidenced through optical heating of a 2D array of stacked titanium nitride (TiN) (plasmonic refractory nanoheater) and height-controlled silicon (Si) (1D waveguide heatsink) cylinders. Depending on the Si pillar height, the temperature rise of a TiN : Si voxel ranges from a few up to thousands of degrees at a fixed pump power. The temperature of the TiN : Si voxel is remotely measured from the Raman shift of the Si pillar. Using ellipsometry, we find a temperature threshold of 400 °C, above which the thin TiN film is chemically degraded due to oxidation. The latter enables fine tailoring of thermal gradients using TiN : Si voxels of equal size but different permittivity. These findings contribute towards the development of tunable thermoplasmonics by demonstrating programmable non-uniform temperature profiles in the steady-state regime under continuous-wave laser illumination for a variety of thermo-optical applications.

11.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209122

RESUMEN

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 µg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.


Asunto(s)
Antivirales/química , COVID-19/prevención & control , Materiales Biocompatibles Revestidos/química , Nanofibras/química , SARS-CoV-2/química , Animales , COVID-19/transmisión , Chlorocebus aethiops , Cobre/química , Oro/química , Humanos , Poliésteres/química , Titanio/química , Células Vero
12.
Membranes (Basel) ; 11(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34940466

RESUMEN

Copper-coated nanofibrous materials are desirable for catalysis, electrochemistry, sensing, and biomedical use. The preparation of copper or copper-coated nanofibers can be pretty challenging, requiring many chemical steps that we eliminated in our robust approach, where for the first time, Cu was deposited by magnetron sputtering onto temperature-sensitive polymer nanofibers. For the first time, the large-scale modeling of PCL films irradiation by molecular dynamics simulation was performed and allowed to predict the ions penetration depth and tune the deposition conditions. The Cu-coated polycaprolactone (PCL) nanofibers were thoroughly characterized and tested as antibacterial agents for various Gram-positive and Gram-negative bacteria. Fast release of Cu2+ ions (concentration up to 3.4 µg/mL) led to significant suppression of E. coli and S. aureus colonies but was insufficient against S. typhimurium and Ps. aeruginosa. The effect of Cu layer oxidation upon contact with liquid media was investigated by X-ray photoelectron spectroscopy revealing that, after two hours, 55% of Cu atoms are in form of CuO or Cu(OH)2. The Cu-coated nanofibers will be great candidates for wound dressings thanks to an interesting synergistic effect: on the one hand, the rapid release of copper ions kills bacteria, while on the other hand, it stimulates the regeneration with the activation of immune cells. Indeed, copper ions are necessary for the bacteriostatic action of cells of the immune system. The reactive CO2/C2H4 plasma polymers deposited onto PCL-Cu nanofibers can be applied to grafting of viable proteins, peptides, or drugs, and it further explores the versatility of developed nanofibers for biomedical applications use.

13.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201293

RESUMEN

The study of the L- and D-amino acid properties in proteins and peptides has attracted considerable attention in recent years, as the replacement of even one L-amino acid by its D-analogue due to aging of the body is resulted in a number of pathological conditions, including Alzheimer's and Parkinson's diseases. A recent trend is using short model systems to study the peculiarities of proteins with D-amino acids. In this report, the comparison of the excited states quenching of L- and D-tryptophan (Trp) in a model donor-acceptor dyad with (R)- and (S)-ketoprofen (KP-Trp) was carried out by photochemically induced dynamic nuclear polarization (CIDNP) and fluorescence spectroscopy. Quenching of the Trp excited states, which occurs via two mechanisms: prevailing resonance energy transfer (RET) and electron transfer (ET), indeed demonstrates some peculiarities for all three studied configurations of the dyad: (R,S)-, (S,R)-, and (S,S)-. Thus, the ET efficiency is identical for (S,R)- and (R,S)-enantiomers, while RET differs by 1.6 times. For (S,S)-, the CIDNP coefficient is almost an order of magnitude greater than for (R,S)- and (S,R)-. To understand the source of this difference, hyperpolarization of (S,S)-and (R,S)- has been calculated using theory involving the electron dipole-dipole interaction in the secular equation.


Asunto(s)
Transferencia de Energía , Cetoprofeno/química , Fotoquímica , Triptófano/química , Estructura Molecular , Estereoisomerismo
14.
Emerg Infect Dis ; 27(8): 2224-2227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34287138

RESUMEN

Two variants of highly pathogenic avian influenza A(H5N8) virus were detected in dead poultry in Western Siberia, Russia, during August and September 2020. One variant was represented by viruses of clade 2.3.4.4b and the other by a novel reassortant between clade 2.3.4.4b and Eurasian low pathogenicity avian influenza viruses circulating in wild birds.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Aves , Brotes de Enfermedades , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia , Virus Reordenados/genética , Federación de Rusia/epidemiología , Siberia/epidemiología
15.
Dalton Trans ; 50(24): 8467-8475, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34047321

RESUMEN

Despite the wide variety of strategies developed to combat pathogenic microorganisms, the infectious diseases they cause remain a worldwide health issue. Hence, the search for new disinfectants, which prevent infection spread, constitutes an extremely urgent task. One of the most promising methods is the use of photoactive compounds - photosensitizers, capable of generating reactive oxygen species, in particular, singlet oxygen (O2(1Δg)), which causes rapid and effective death of microorganisms of all types. In this work, we propose the utilization of the powdered cluster complex (Bu4N)2[{Mo6I8}(OTs)6] as a photoactive additive to commercially available fluoroplastic lacquer F-32L to create heterogeneous self-sterilizing coatings. We show that soaking of the prepared films in water for 60 days did not lead to a decrease in their photosensitization properties indicating their excellent stability. Moreover, the use of the cluster complex in the solid state allowed significant expansion of the operating wavelength range, which covers the UV region and a large part of the visible region (250-650 nm). The films displayed high photoantimicrobial activity against five common pathogens (bacteria and fungi) under white-light irradiation. Overall, the properties demonstrated make these materials promising for practical use in everyday outdoor and indoor disinfection since they are active under both sunlight and artificial lighting.


Asunto(s)
Antiinfecciosos/química , Molibdeno/química , Fármacos Fotosensibilizantes/química , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/prevención & control , Hongos/efectos de los fármacos , Humanos , Molibdeno/farmacología , Micosis/prevención & control , Fármacos Fotosensibilizantes/farmacología , Oxígeno Singlete/química
16.
J Med Entomol ; 58(2): 773-780, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33112404

RESUMEN

The toxic effects of an avermectin-impregnated fine plant powder (AIFP) against larval Aedes aegypti L. (Diptera: Culicidae), Culex modestus Ficalbi (Diptera: Culicidae), and Anopheles messeae Falleroni (Diptera: Culicidae), as well as selected nontarget aquatic invertebrates, were studied under laboratory conditions. The possibility of trophic transfer of avermectins (AVMs) through the food chain and their toxic effects on predaceous species fed AIFP-treated mosquito larvae was also evaluated. Among mosquitoes, Anopheles messeae were the most sensitive to AIFP, while Cx. modestus exhibited the least sensitivity to this formulation. Among nontarget aquatic invertebrates, the greatest toxicity of AIFP was observed for benthic species (larval Chironomus sp. Meigen (Diptera: Chironomidae), whereas predators (dragonflies, water beetles, and water bugs) exhibited the lowest AIFP sensitivity. AIFP sensitivity of the clam shrimp Lynceus brachyurus O. F. Muller (Diplostraca: Lynceidae), the phantom midge Chaoborus crystallinus De Geer (Diptera: Chaoboridae), and the mayfly Caenis robusta Eaton (Ephemeroptera: Caenidae) was intermediate and similar to the sensitivity of the mosquito Cx. modestus. However, these nontarget species were more resistant than An. messeae and Ae. aegypti. Solid-phase extraction of mosquito larvae treated with AIFP and subsequent high-performance liquid chromatography (HPLC) analysis of the extracts revealed an AVM concentration of up to 2.1 ± 0.3 µg/g. Feeding the creeping water bug Ilyocoris cimicoides L. (Hemiptera: Naucoridae) on the AIFP-treated mosquito larvae resulted in 51% mortality of the predaceous species. But no toxicity was observed for Aeshna mixta Latreille (Odonata: Aeshnidae) dragonfly larvae fed those mosquito larvae. The results of this work showed that this AVM formulation can be effective against mosquito larvae.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Culicidae/efectos de los fármacos , Ivermectina/análogos & derivados , Aedes/efectos de los fármacos , Animales , Anopheles/efectos de los fármacos , Culex/efectos de los fármacos , Seguimiento de Parámetros Ecológicos , Ephemeroptera/efectos de los fármacos , Cadena Alimentaria , Insecticidas/farmacología , Insecticidas/toxicidad , Invertebrados/efectos de los fármacos , Ivermectina/farmacología , Ivermectina/toxicidad , Larva/efectos de los fármacos , Control de Mosquitos , Odonata/efectos de los fármacos , Polvos/farmacología
17.
Phys Chem Chem Phys ; 22(43): 25195-25205, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33125015

RESUMEN

Photoinduced intra- and interlayer electron transfer (ET) of doubly bridged donor-acceptor molecule, porphyrin-fullerene dyad (PF), was studied in single- and multi-layered Langmuir-Schäfer (LS) films and in LS films, where PF and an efficient electron donating polymer polyhexyltiophene (PHT) formed a bilayer PHT/PF and multi-layered PHT/PF structures. The ET through layers were investigated by a method, which measures the photovoltaic (PV) response proportional to the number of charge-separated (CS) states and to the CS distance between the electrons and holes formed in pulsed photo-excitation. Primary conclusions were, that ET starts as formations of CS dyads (P+F-) in single-layers, continues as long-range intra-layer charge migrations following interlayer CS between two adjacent monolayers. Quantitative conclusions were, that the interlayer ET efficiency is 100% in the bi-layered PF structure (2PF), where two CS dyads in adjacent layers forms CS complexes (P+F/PF-) and that the probability to form longer or higher order of CS complexes follows an expression of a convergent geometric series, with a converting factor of 2/3. In the PHT/PF bilayer structure the ET efficiency was one order of magnitude higher, than that for the 2PF structure due to the ET from the CS dyads to ground state electron donor PHT, with an acceptor density, much higher than that of (P+F-).

18.
Viruses ; 12(4)2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326238

RESUMEN

Every year, influenza B viruses (IBVs) contribute to annual illness, and infection can lead to serious respiratory disease among humans. More attention is needed in several areas, such as increasing virulence or pathogenicity of circulating B viruses and developing vaccines against current influenza. Since preclinical trials of anti-influenza drugs are mainly conducted in mice, we developed an appropriate infection model, using an antigenically-relevant IBV strain, for furtherance of anti-influenza drug testing and influenza vaccine protective efficacy analysis. A Victoria lineage (clade 1A) IBV was serially passaged 17 times in BALB/c mice, and adaptive amino acid substitutions were found in hemagglutinin (HA) (T214I) and neuraminidase (NA) (D432N). By electron microscopy, spherical and elliptical IBV forms were noted. Light microscopy showed that mouse-adapted IBVs caused influenza pneumonia on day 6 post inoculation. We evaluated the illness pathogenicity, viral load, and histopathological features of mouse-adapted IBVs and estimated anti-influenza drugs and vaccine efficiency in vitro and in vivo. Assessment of an investigational anti-influenza drug (oseltamivir ethoxysuccinate) and an influenza vaccine (Ultrix®, SPBNIIVS, Saint Petersburg, Russia) showed effectiveness against the mouse-adapted influenza B virus.


Asunto(s)
Adaptación Biológica , Interacciones Huésped-Patógeno , Virus de la Influenza B/fisiología , Infecciones por Orthomyxoviridae/virología , Animales , Antivirales/química , Antivirales/farmacología , Modelos Animales de Enfermedad , Genoma Viral , Virus de la Influenza B/efectos de los fármacos , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Neuraminidasa/antagonistas & inhibidores , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/prevención & control , ARN Viral , Proteínas Virales/antagonistas & inhibidores
19.
Heliyon ; 6(4): e03768, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32337380

RESUMEN

Anthropogenic activity causes the introduction of zinc compounds into the biological cycle in mining and processing sites and its accumulation in organs and tissues, causing systemic toxicity. A cumulative effect of zinc is predominantly neurotoxic and it also affects the respiratory, cardiovascular and digestive systems. This study evaluates the effects of single-dose intragastric administration of 100 mg/kg zinc succinate on the structure and function of organs and tissues in male Wistar rats 1 month after treatment. The presented morphofunctional approach for the toxicity evaluation included the study of behavioral responses using the automated Laboras® complex, fluorescent spectral analysis of the NADH and FAD activity and histological evaluation of animal organs and tissues. The results of the behavioral activity assessment showed a significant decrease in animals' motor activity, whereas the fluorescence spectra analysis demonstrated a decrease in coenzyme NADH without the reduction of FAD levels. We detected toxic and dystrophic changes in the cerebral cortex, heart, lungs and liver tissues. Our original multiparametric approach enables a comprehensive assessment of the long-term toxic effects of the metal salts such as zinc succinate, especially in the cerebral cortex at the doses much lower than the acute LD50 reported for the common zinc salts.

20.
RSC Adv ; 10(37): 22257-22263, 2020 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35516606

RESUMEN

The light-induced antibacterial and antifungal properties of A2[M6I8L6] with M = Mo and W, A = organic cation, L = ligand have been studied. The photoactive compounds (TBA)2[W6I8(C7H7SO3)6] and (TBA)2[W6I8(COOCF3)6] have been incorporated into a permeable silicone matrix and were measured for their application in the decomposition of multi-resistant bioactive species (hospital germs) such as S. aureus and P. aeruginosa as well as fungi. In addition, we present a new high volume synthesis route for these types of cluster compounds departing from the soluble compound W6I22.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...